Python所有方向的学习路线,你们要的知识体系在这,千万别做了无用功!

Python 专栏收录该内容
17 篇文章 71 订阅

前言

一直以来都有很多想学习Python的朋友们问我,学Python怎么学?爬虫和数据分析怎么学?web开发的学习路线能教教我吗?

我先告诉大家一个点,不管你是报了什么培训班,还是自己在通过各种渠道自学,你一定要注重一个东西:完整的知识体系。

感觉很迷茫?学了一段时间还是不入流?很大一部分原因是因为你没有一个完整的知识体系,你不知道自己现在的进度、未来的方向。

端午三天,虽然回了乡下,但还是抽时间去做了Python所有方向的学习路线,今天分享给大家。


一、Python入门

初学者都会比较好奇,学了这么久Python,什么程度才叫入门了呢?

每个人对技术的认知都不尽相同,在我个人看来,你学完以下这些东西就可以算是入门了,为什么?因为以下这些东西是Python进阶各个方向都必备的基础知识,你进阶去学爬虫或者web开发等方向,你都得先学会它们。

因为知识点放在一起比较多,我把它们稍加区分成基础和高级编程两块,对于每一个自学的人,按照这个体系去打好基础,你未来的路会走得更稳重。

适用人群:零基础/基础不扎实者,学Python都从这里开始

在这里插入图片描述
在这里插入图片描述


二、爬虫

爬虫作为一个热门的方向,不管是在自己兼职还是当成辅助技能提高工作效率,都是很不错的选择,当然了,还有一些以此为主职业的爬虫工程师。

那么爬虫怎么学习才能成体系?中级水平的爬虫所需要的东西不是很多,参考这个体系去学习,如果能掌握90%,你可以很自信地说你已经精通爬虫。

适用人群:爬虫方向/数据分析方向/非程序员加薪
在这里插入图片描述


三、数据分析

谁都知道数据是这个时代最为宝贵的东西,但有一个前提就是,你拿到的数据你得懂,一切发挥不出应有功效的数据都是垃圾数据。

数据分析的使命就是发挥数据应有的作用:直接作用和间接作用。

如果你是从事大数据相关工作的IT人士,我建议你掌握但不要止步于下面的数据体系,不要以为会了Numpy、Pandas、Matplotlib就是会了数据分析,真正强大的东西还在后面。

如果你是把数据分析当成一个辅助技能,那么学完下面这些就差不多,它们能满足你大多数的需求。有些小伙伴可能还是非计算机专业且从事非IT类的工作,比如说运营之类的岗位,那么我建议大家学Python入门+爬虫+数据分析就可以了,它们足以提升你在职场的工作效率,不用去全栈、测试等方向浪费时间,对你没什么大的帮助。

适用人群:爬虫方向/数据分析方向/非程序员加薪
在这里插入图片描述


四、web开发(前/后端)

web开发是程序员职业中的热门,目前来讲,人才缺口依然很大。web开发分为前端、后端、全栈3个方向,目前国内主流的还是前后端分离,前端主要考虑用户体验,后端主要考虑底层业务逻辑、平台稳定和性能,最主要是要看你想做哪一部分?你是喜欢做用户看得见的部分,还是考虑用户看不见的部分。

至于全栈,舆论一直很大,褒贬不一,我的建议是如果时间和精力允许,在技术上追求更全面是不会错的。

适用人群:前端/后端/全栈工程师
在这里插入图片描述
在这里插入图片描述


五、自动化测试

自动化测试已是未来的一种趋势,现在很多的企业都要求程序员具备自动化测试的能力,而对于自动化测试这个领域来讲,Python是目前最合适的语言。

适用人群:程序员/测试工程师
在这里插入图片描述


六、机器学习

机器学习是通往人工智能的必经之路,难度也比前面的大很多,与算法打交道是家常便饭,高付出也会带来高回报,薪资待遇很不错。虽然Python在这方面确实很强,但提醒大家一点,这个领域的门槛比较高,本科生基本无缘,建议上了硕士以上学历再考虑进入这个行业。

在这里插入图片描述


寄语

上面就是Python所有方向的学习路线了,把你感兴趣的方向掌握了90%之后,你去找工作不是什么问题的。

有些细心的朋友可能会发现,我没放人工智能的学习路线。说实在的,人工智能比机器学习要广泛很多,它已经不是某一门语言就能单独完成的事情了,所以这里不做推荐。

同样的,网络安全工程师我也没有放进去谈,虽然Python也能做网络安全方面的事情,但对于一个成熟的网络安全工程师甚至红、H客而言,你需要精通的语言可不止1门而已了,又或者说,这已经不是语言工具层面的问题了。

那么,祝大家在学习的路上,学有所成。

在这里插入图片描述

不知不觉已经破了2万粉了,一如既往地送你们东西,干货主要有:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

如果你用得到的话可以直接拿走,在我的QQ技术交流群里(技术交流和资源共享,广告进来腿给你打断)可以自助拿走,群号是553274211。

在这里插入图片描述

相关推荐
<p style="font-size:16px;"> 本课程适合具有一定深度学习基础希望发展为深度学习之计算机视觉方向算法工程师和研发人员同学们。<br /> <br /> 基于深度学习计算机视觉是目前人工智能最活跃领域应用非常广泛如人脸识别和无人驾驶中机器视觉等。该领域发展日新月异网络模型和算法层出不穷。如何快速入门并达到可以从事研发高度对新手和中级水平学生而言面临不少挑战。精心准备本课程希望帮助大家尽快掌握基于深度学习计算机视觉基本原理、核心算法和当前领先技术从而有望成为深度学习之计算机视觉方向算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习计算机视觉技术原理并进行项目实践。课程涵盖计算机视觉七大任务包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合逐篇深入解读经典和前沿论文70余篇图文并茂破译算法难点, 使用思维导图梳理技术点。项目实践使用Keras框架(后端为Tensorflow)学员可快速上手。<br /> <br /> 通过本课程学习学员可把握基于深度学习计算机视觉技术发展脉络掌握相关技术原理和算法有助于开展该领域研究与开发实战工作。另外深度学习之计算机视觉方向知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料课件PPT(pdf格式)和项目实践代码方便学员学习和复习。<br /> <br /> 本课程分为上下两部分其中上部包含课程前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割)下部包含课程后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902221256508000.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257045928.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257156312.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257252319.gif" alt="" /> </p>
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值