花了4000块钱报班,面试时被问到Python的垃圾回收机制,答不上来被PASS了.....

Python 专栏收录该内容
17 篇文章 71 订阅

昨晚凌晨跟一个大四的粉丝聊得比较晚,这小伙子面试时被问到Python的垃圾回收机制问题,结果哑口无言,最后遗憾地被PASS掉了…(文章已取得粉丝同意可晒聊天记录)

在这里插入图片描述

你有没有想过为什么我们频繁地使用Python敲代码做项目,实际上一直在生产对象并不断占用内存,而我们很少会去清理Python的内存,理论上来讲它总有一天把内存消耗殆尽(溢出),可每次打开Python却“安然无恙”?真的只是你的计算机内存很大吗?

并不是,一个成熟的软件它都会有自己的内存管理和垃圾回收机制,而不是光靠硬件来提供绝对支持。

在这里插入图片描述
Python也是有它的垃圾回收机制,这也是面试的时候面试官喜欢问的一个问题:Python的内存管理和垃圾回收机制的原理是什么?

很多时候我们太过于注重一些表层的东西而忽视了里层。

就好比我们开车,如果你只知道加油、插钥匙、踩油门、刹车和方向盘等这些表面操作,对发动机舱的东西一无所知,你算不得老司机,早晚你得在大马路上过夜。

今天就来跟大家讲讲Python的内存管理和垃圾回收机制是怎么一个原理,更加深入地了解Python,避免下次被问到这种问题你回答不上来。

在这里插入图片描述


一、大管家refchain

在Python的C源码中有一个名为refchain的环状双向链表,这个链表比较牛逼了,因为Python程序中一旦创建对象都会把这个对象添加到refchain这个链表中。也就是说他保存着所有的对象。例如:

age = 18
name = "张三"

image-20201209161331609


二、引用计数器

在refchain中的所有对象内部都有一个ob_refcnt用来保存当前对象的引用计数器,顾名思义就是自己被引用的次数,例如:

age = 18
name = "张三"
nickname = name

上述代码表示内存中有 18 和 “张三” 两个值,他们的引用计数器分别为:1、2 。

image-20201209161558356

当值被多次引用时候,不会在内存中重复创建数据,而是引用计数器+1 。 当对象被销毁时候同时会让引用计数器-1,如果引用计数器为0,则将对象从refchain链表中摘除,同时在内存中进行销毁(暂不考虑缓存等特殊情况)。

age = 18
number = age # 对象18的引用计数器 + 1
del age # 对象18的引用计数器 - 1

def run(arg):
print(arg)

run(number) # 刚开始执行函数时,对象18引用计数器 + 1,当函数执行完毕之后,对象18引用计数器 - 1 。

num_list = [11,22,number] # 对象18的引用计数器 + 1

在这里插入图片描述


三、 标记清除&分代回收

基于引用计数器进行垃圾回收非常方便和简单,但他还是存在循环引用的问题,导致无法正常的回收一些数据,例如:

v1 = [11,22,33] # refchain中创建一个列表对象,由于v1=对象,所以列表引对象用计数器为1.
v2 = [44,55,66] # refchain中再创建一个列表对象,因v2=对象,所以列表对象引用计数器为1.
v1.append(v2) # 把v2追加到v1中,则v2对应的[44,55,66]对象的引用计数器加1,最终为2.
v2.append(v1) # 把v1追加到v1中,则v1对应的[11,22,33]对象的引用计数器加1,最终为2.

del v1 # 引用计数器-1
del v2 # 引用计数器-1

对于上述代码会发现,执行del操作之后,没有变量再会去使用那两个列表对象,但由于循环引用的问题,他们的引用计数器不为0,所以他们的状态:永远不会被使用、也不会被销毁。项目中如果这种代码太多,就会导致内存一直被消耗,直到内存被耗尽,程序崩溃。

为了解决循环引用的问题,引入了标记清除技术,专门针对那些可能存在循环引用的对象进行特殊处理,可能存在循环应用的类型有:列表、元组、字典、集合、自定义类等那些能进行数据嵌套的类型。

在这里插入图片描述

标记清除:创建特殊链表专门用于保存 列表、元组、字典、集合、自定义类等对象,之后再去检查这个链表中的对象是否存在循环引用,如果存在则让双方的引用计数器均 - 1 。

分代回收:对标记清除中的链表进行优化,将那些可能存在循引用的对象拆分到3个链表,链表称为:0/1/2三代,每代都可以存储对象和阈值,当达到阈值时,就会对相应的链表中的每个对象做一次扫描,除循环引用各自减1并且销毁引用计数器为0的对象。

// 分代的C源码
#define NUM_GENERATIONS 3
struct gc_generation generations[NUM_GENERATIONS] = {
/* PyGC_Head, threshold, count */
{{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0}, // 0{{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0}, // 1{{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0}, // 2};

特别注意:0代和1、2代的threshold和count表示的意义不同。

  • 0代,count表示0代链表中对象的数量,threshold表示0代链表对象个数阈值,超过则执行一次0代扫描检查。
  • 1代,count表示0代链表扫描的次数,threshold表示0代链表扫描的次数阈值,超过则执行一次1代扫描检查。
  • 2代,count表示1代链表扫描的次数,threshold表示1代链表扫描的次数阈值,超过则执行一2代扫描检查。
    在这里插入图片描述

四、 情景模拟

根据C语言底层并结合图来讲解内存管理和垃圾回收的详细过程。

第一步:当创建对象age=19时,会将对象添加到refchain链表中。

img

第二步:当创建对象num_list = [11,22]时,会将列表对象添加到 refchain 和 generations 0代中。

img

第三步:新创建对象使generations的0代链表上的对象数量大于阈值700时,要对链表上的对象进行扫描检查

当0代大于阈值后,底层不是直接扫描0代,而是先判断2、1是否也超过了阈值

  • 如果2、1代未达到阈值,则扫描0代,并让1代的 count + 1
  • 如果2代已达到阈值,则将2、1、0三个链表拼接起来进行全扫描,并将2、1、0代的count重置为0
  • 如果1代已达到阈值,则讲1、0两个链表拼接起来进行扫描,并将所有1、0代的count重置为0

对拼接起来的链表在进行扫描时,主要就是剔除循环引用和销毁垃圾,详细过程为:

  • 扫描链表,把每个对象的引用计数器拷贝一份并保存到 gc_refs中,保护原引用计数器。
  • 再次扫描链表中的每个对象,并检查是否存在循环引用,如果存在则让各自的gc_refs减 1
  • 再次扫描链表,将 gc_refs 为 0 的对象移动到unreachable链表中;不为0的对象直接升级到下一代链表中
  • 处理unreachable链表中的对象的 析构函数 和 弱引用,不能被销毁的对象升级到下一代链表,能销毁的保留在此链表
    • 析构函数,指的就是那些定义了__del__方法的对象,需要执行之后再进行销毁处理
    • 弱引用
  • 最后将 unreachable 中的每个对象销毁并在refchain链表中移除(不考虑缓存机制)

至此,垃圾回收的过程结束。

在这里插入图片描述


五、 缓存机制

从上文大家可以了解到当对象的引用计数器为0时,就会被销毁并释放内存。而实际上他不是这么的简单粗暴,因为反复的创建和销毁会使程序的执行效率变低。

Python中引入了“缓存机制”。

例如:引用计数器为0时,不会真正销毁对象,而是将他放到一个名为 free_list 的链表中,之后会再创建对象时不会在重新开辟内存,而是在free_list中将之前的对象来并重置内部的值来使用。

  • float类型,维护的free_list链表最多可缓存100个float对象。
v1 = 3.14 # 开辟内存来存储float对象,并将对象添加到refchain链表。
print(id(v1)) # 内存地址:4436033488
del v1 # 引用计数器-1,如果为0则在rechain链表中移除,不销毁对象,而是将对象添加到float的free_list.
v2 = 9.999 # 优先去free_list中获取对象,并重置为9.999,如果free_list为空才重新开辟内存。
print(id(v2)) # 内存地址:4436033488

# 注意:引用计数器为0时,会先判断free_list中缓存个数是否满了,未满则将对象缓存,已满则直接将对象销毁。
  • int类型,不是基于free_list,而是维护一个small_ints链表保存常见数据(小数据池),小数据池范围:-5 <= value < 257。即:重复使用这个范围的整数时,不会重新开辟内存。
v1 = 38 # 去小数据池small_ints中获取38整数对象,将对象添加到refchain并让引用计数器+1。
print(id(v1)) #内存地址:4514343712
v2 = 38 # 去小数据池small_ints中获取38整数对象,将refchain中的对象的引用计数器+1。
print(id(v2)) #内存地址:4514343712  

# 注意:在解释器启动时候-5~256就已经被加入到small_ints链表中且引用计数器初始化为1,代码中使用的值时直接去small_ints中拿来用并将引用计数器+1即可。另外,small_ints中的数据引用计数器永远不会为0(初始化时就设置为1了),所以也不会被销毁。

在这里插入图片描述

  • str类型,维护unicode_latin1[256]链表,内部将所有的ascii字符缓存起来,以后使用时就不再反复创建
v1 = "A"
print( id(v1) ) # 输出:4517720496
del v1
v2 = "A"
print( id(v1) ) # 输出:4517720496
  • 除此之外,Python内部还对字符串做了驻留机制,针对那么只含有字母、数字、下划线的字符串(见源码Objects/codeobject.c),如果内存中已存在则不会重新在创建而是使用原来的地址里(不会像free_list那样一直在内存存活,只有内存中有才能被重复利用)。
v1 = "wupeiqi"
v2 = "wupeiqi"
print(id(v1) == id(v2)) # 输出:True
  • list类型,维护的free_list数组最多可缓存80个list对象。
v1 = [11,22,33]
print( id(v1) ) # 输出:4517628816
del v1
v2 = ["张","三"]
print( id(v2) ) # 输出:4517628816
  • tuple类型,维护一个free_list数组且数组容量20,数组中元素可以是链表且每个链表最多可以容纳2000个元组对象。元组的free_list数组在存储数据时,是按照元组可以容纳的个数为索引找到free_list数组中对应的链表,并添加到链表中。
v1 = (1,2)
print( id(v1) )
del v1 # 因元组的数量为2,所以会把这个对象缓存到free_list[2]的链表中。
v2 = ("张三","Alex") # 不会重新开辟内存,而是去free_list[2]对应的链表中拿到一个对象来使用。
print( id(v2) )
  • dict类型,维护的free_list数组最多可缓存80个dict对象。
v1 = {"k1":123}
print( id(v1) ) # 输出:4515998128
del v1
v2 = {"name":"张三","age":18,"gender":"男"}
print( id(v1) ) # 输出:4515998128

结语

以上便是Python的内存管理和垃圾回收机制,虽然一场面试不是一个问题就能对整个人做评论,但面试时要是多来几个你不会的问题,那极有可能你是过不了关的。

关于Python的内存管理和垃圾回收机制,不会的小伙子们看懂了吗?这车速不快吧?

在这里插入图片描述

在这里插入图片描述
在程序员这条终身学习的路上,学习资源和方法很重要,这也是这段时间以来我跟粉丝交流过程中解答次数最多的问题,而且大多数的问题我在往期的文章中已经提过了我的看法,所以,给大家推荐3篇大家都喜欢的文章,看完之后你定能收货不少。

(1)学习资源在这里,做龙叔粉丝不会让你白关注!

(2)Python所有方向的学习路线,你们要的知识体系在这,千万别做了无用功!

(3)自学编程的妙方法,直接省了几万块钱报班,不收藏就可惜了!

在这里插入图片描述

相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值